The Future of Data Analysis

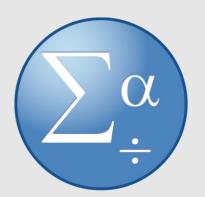
20th European Conference on Research Methodology for Business and Management Studies

Ana Moreira

<u>Professor at ISPA</u> Organizational Psychology

Professor at ISMAT

Work and Organizational Psychology, Data Analysis, Research Methods in Work Psychology and Occupational Health Organizational Diagnosis and Interventions



Ana Moreira

SPSS historical background

Statistical Package for the Social Sciences (SPSS) appears in 1968, developed by Nie, Bent and Hul, becoming a great help for studies developed in social sciences.

SPSS historical background

In 2009 the software was acquired by IBM.


Ana Moreira

Ana Moreira

New ways in data analysis

Structural Equation Analysis

SEA was developed in the first half of the 20th century.

Ana Moreira

What is Structural Equation Analysis?

At first, this was an obscure modelling technique

Today it is increasingly used in research and causal analysis in Social Sciences

Ana Moreira

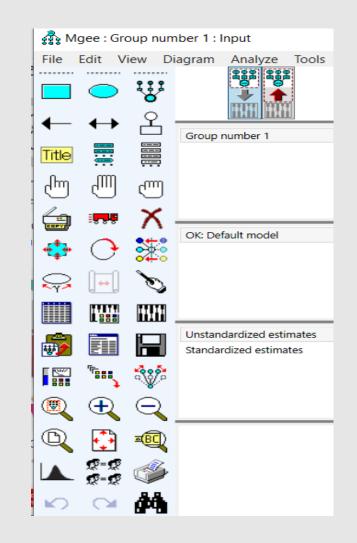
What is Structural Equation Analysis?

SEA application in the social sciences was democratized with the appearance of the software LISREL in the 70s (Jöreskog, 1978).

Ana Moreira

What is Structural Equation Analysis?

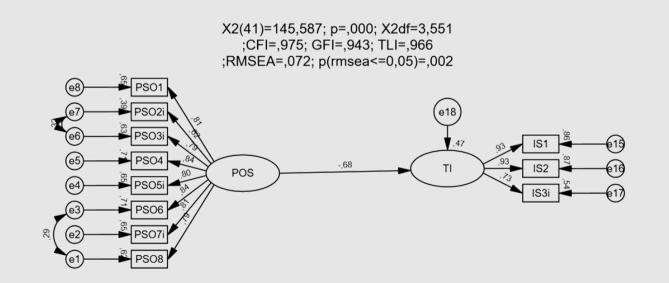
In 1994, the software AMOS (Analysis of Moments Structures), was developed by James Arbuckle.



Ana Moreira

What is Structural Equation Analysis?

AMOS integrats since its first edition a graphical interface whose simplicity makes the teaching and understanding of structural equation models less complicated.



What is Structural Equation Analysis?

Ana Moreira

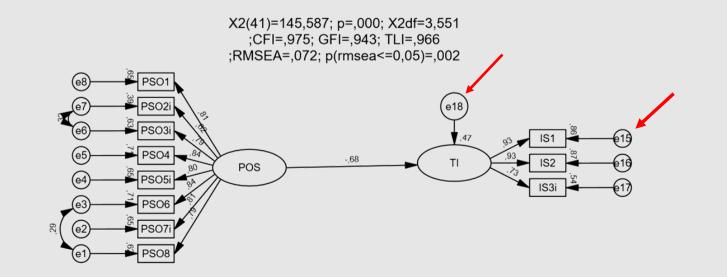
SEA is a generalised modelling technique whose purpose is to test the validity of theoretical models that define causal, hypothetical relationships between variables.



What is Structural Equation Analysis?

Ana Moreira

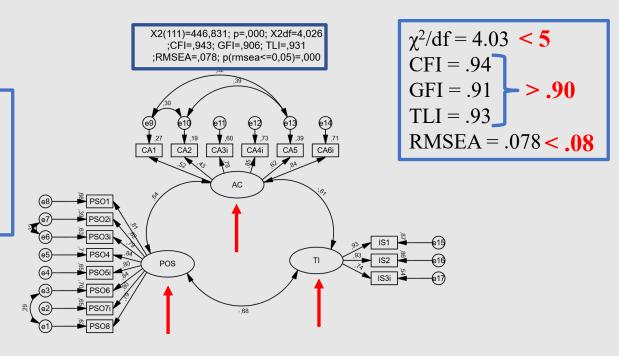
These relationships are represented by parameters that indicate the magnitude of the effect that independent variables exert on dependent variables, in a set composed of hypotheses about patterns of association between the variables in a model.



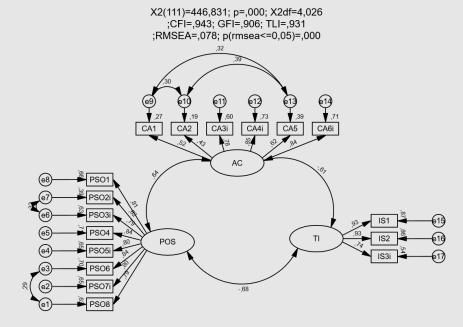
What is Structural Equation Analysis?

Ana Moreira

Structural equation analysis is an extension of generalised linear models that explicitly consider measurement errors associated with the variables under study.

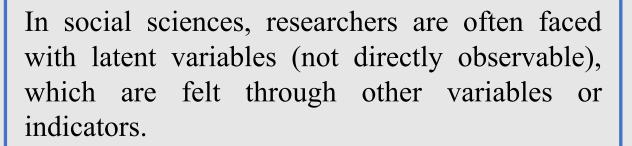


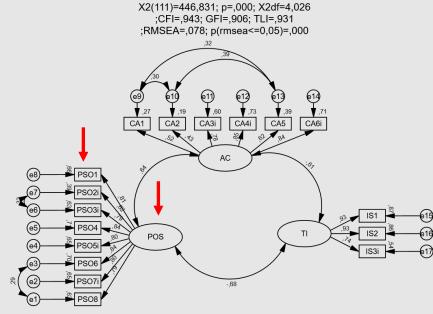
Ana Moreira


What is Structural Equation Analysis?

Structural equation analysis can be described as a combination of the classic techniques of Factor Analysis and linear regression.

What is Structural Equation Analysis?

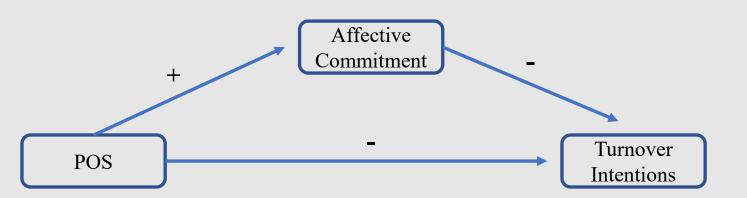

SEA is used in diverse applications ranging from the psychometric adaptation of instruments, to testing longitudinal and cross-sectional causal models, analysis of invariance of models and parameters between groups.


<u>Ana Moreira</u>

Why use Structural Equation Analysis?

This is the case of likert-type scales, which seek to operationalise variables or constructs that are not directly operational.

15



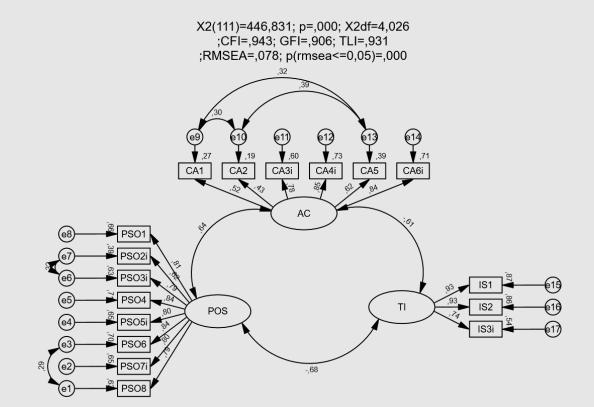
GRAPHICS SUPPLIE

Ana Moreira

GRAPHICS SUPPL

A Mediation Model using AMOS Graphics

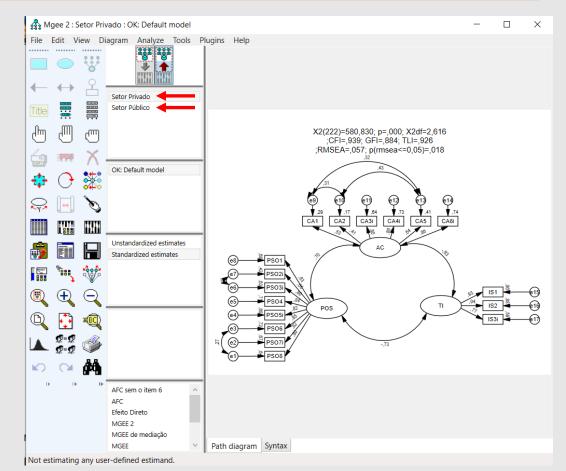
Hypothesis: Affective commitment has a mediating effect on the relationship between perceived organisational support and turnover intentions.


A Mediation Model using AMOS Graphics

Ana Moreira

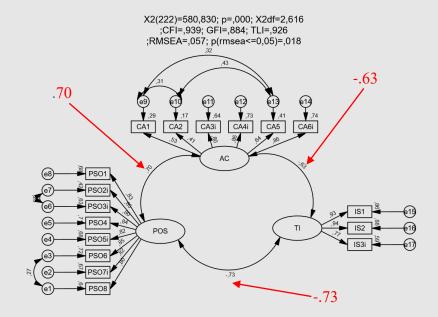
In the first step, we checked the association between the variables under study.

			Estimate	S.E.	C.R.	Р
POS	<>	AC	,886	,109	8,118	***
POS	<>	TI	-1,213	,111	-10,882	***
AC	<>	TI	-,787	,096	-8,213	***

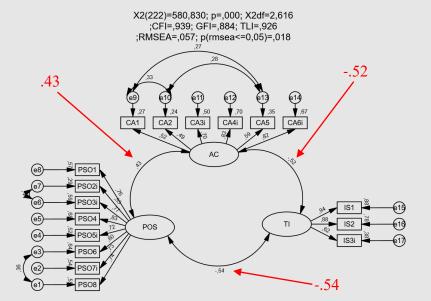


A Mediation Model using AMOS Graphics

Ana Moreira


As this sample includes employees from public and private sectors, we checked whether the intensity of these relations varies according to the sector of activity.

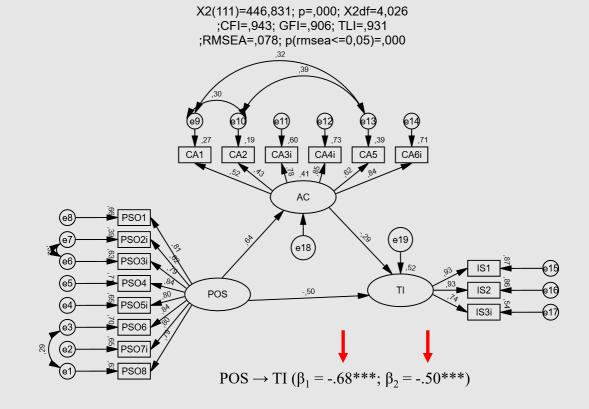
A Mediation Model using AMOS Graphics



Ana Moreira

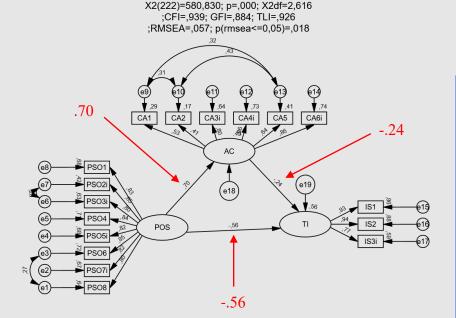
Private Sector

The associations between the variables under study are stronger for the private sector than for the public sector.


Public Sector

A Mediation Model using AMOS Graphics

Ana Moreira


When we tested the mediation effect, we found that there is a partial mediation effect of affective commitment on the relationship between perceived organisational support and turnover intentions.

A Mediation Model using AMOS Graphics

Ana Moreira

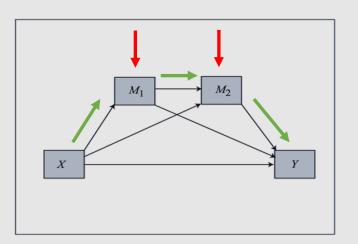
We can also verify whether the mediation effect is identical for both sectors or whether it differs in intensity depending on the sector.

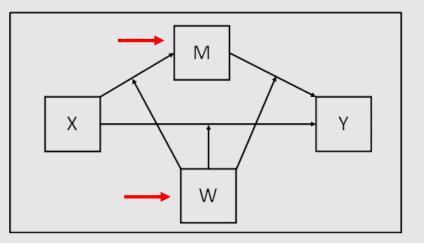
Z = -3.20

Private Sector

Ana Moreira

Macro Process


Now let's talk about a new application for data analysis, the Macro Process developed by Hayes (2013).


base de c	autos para i	naballic	o, de latitites e p	Turio.sav [Da	taset ij - ib	ivi or oo otati		noi				
le <u>E</u> dit	View	<u>D</u> ata	Transform	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	Extensions	<u>W</u> indow	<u>H</u> elp			
				Power	Analysis		>				2	
	Nam	10	Type	Report	S		>	Values	Missing	Columns	· .	Align
1	Idade		Numeric	Descri	ptive Statis	stics	>	10	None	12	圖 Rig	
2	Género		Numeric	<u>B</u> ayes	ian Statist	ics	>	Feminin	None	12	圖 Rig	
3	HabLit		Numeric	Ta <u>b</u> les			>	Igual ou I	None	12	遍 Rig	
4	AntOrg		Numeric	Comp	are Means		>	10	None	12	🗐 Rig	ght
5	AntFun		Numeric	Gener	al Linear M	lodel	>	те	None	12	圖 Rig	ght
6	Setor		Numeric		alized Line		>	Privado}	None	12	圖 Rig	ght
7	CA1		Numeric		-	ar would's	,	Discordo	None	12	🗃 Rig	ght
8	CA2		Numeric	-	Models		>	Discordo	None	12	🗏 Rig	ght
9	CA3i		Numeric	<u>C</u> orrel	ate		>	Discordo	None	12	🗃 Rio	aht
10	CA4i		Numeric	<u>R</u> egre	ssion		>	Automa	atic Linear Mod	eling		nt
11	CA5		Numeric	L <u>og</u> lin	ear		>	Linear.				nt
12	CA6i		Numeric	Neural	Networks		>		Estimation			nt
13	PS01		Numeric	Classi	fv		>					nt
14	PSO2i		Numeric		 sion Redu	ction	>	🔠 Partial	Lea <u>s</u> t Squares			nt
15	PSO3i		Numeric	Scale	olon recuu	ction	>	Sobel				ht
16	PSO4		Numeric	-				PROCE	ESS v3.5 by Ar	ndrew F. Hay	/es	ht
17	PSO5i		Numeric		rametric T	ests	>	Simple	Moderation	-		nt
18	PSO6		Numeric	Foreca	as <u>t</u> ing		>					nt
19	PS07i		Numeric	<u>S</u> urviva	al		>	Binary	Logistic			nt
20	PSO8		Numeric	M <u>u</u> ltip	e Respons	se	>	Real Multing	mial Logistic			ht
21	IS1		Numeric	🜠 Missin	g Value Ar	nalysis		K Ordinal				nt
22	IS2		Numeric	Multin	e Imputati	on -	>	Probit.				ht
23	IS3i		Numeric		ex Sample		>					nt
24	CAfet		Numeric			15		Monline				nt
25	PSO		Numeric	Bimula Simula	tion			R Weight	Estimation			nt
26	TI		Numeric	Qualit	/ Control		>	E-Stage	e Least Square	s		ht
27				<u>S</u> patia	I and Temp	poral Modeli	ng >	🔜 Quantil	e			
28				Direct	Mar <u>k</u> eting		>					
29					-			Dptima	I Scaling (CAT	KEG)		

Ana Moreira

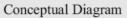
Macro Process

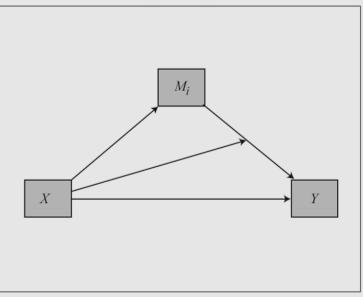
Macro Process allows us to test serial mediating effects, and moderated mediating effects.

Serial Mediating effect

Moderated Mediating effect

Macro Process



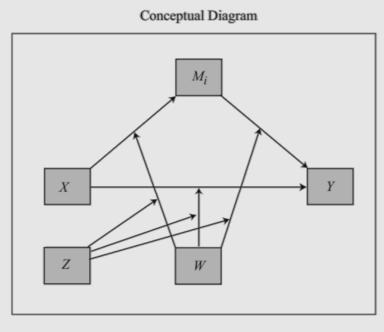

Ana Moreira

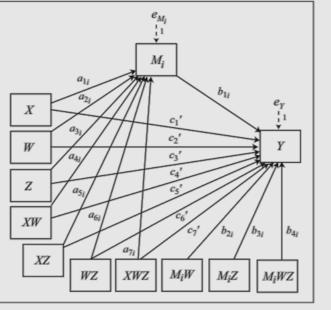
M

Conceptual Diagram

Macro Process has 74 models, from the simplest to the most complicated.

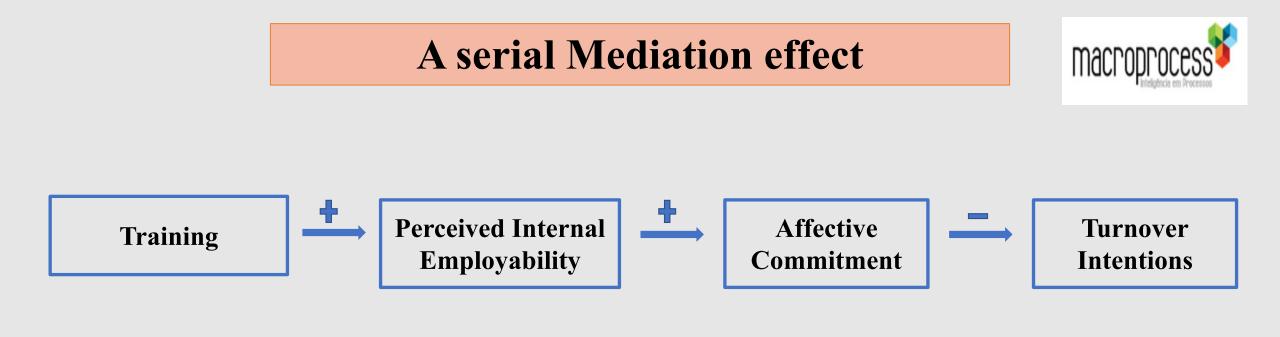
Model 74


Model 1


Ana Moreira

Macro Process

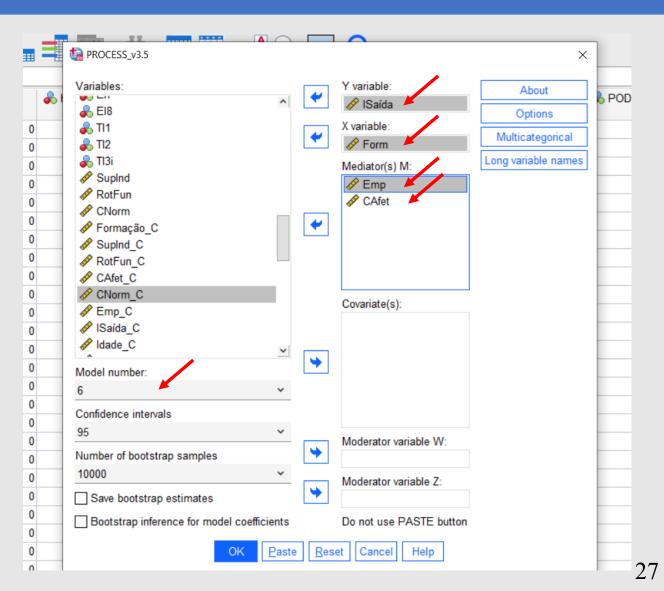
This is one of the most complicated models.


Statistical Diagram

Conditional indirect effect of X on Y through $M_i = (a_{1i} + a_{4i}W + a_{5i}Z + a_{7i}WZ) \cdot (b_{1i} + b_{2i}W + b_{3i}Z + b_{4i}WZ)$

Conditional direct effect of X on $Y = c_1' + c_4'W + c_5'Z + c_7'WZ$

*Model 73 allows up to 10 mediators operating in parallel


Ana Moreira

Hypothesis: Perceived internal employability and affective commitment both represent a serial indirect effect in the relationship between training and turnover intentions.

A serial Mediation effect

Ana Moreira

Ana Moreira

A serial Mediation effect

Ind2 Form

Ind3 Form

In this output, we have the model results, the direct effect and the indirect effects.

OUTCOME V. ISaída	ARIABLE:								
Model Sum	mary								
	R R	-sq	MSE		F	df1	df2		p
,77	91,6	070	,6375	159,1	1099	3,0000	309,0000	,00	00
Model	coeff		se	,	t	q	LLCI	ULCI	
constant	6,1888					-	5,8300	6,5476	
Form	-,0388	-				-	-,1538	-	
Emp	-,3583	,06	29 -	-5,692	5	,0000	-,4822	-,2345	
CAfet	-,4969	,03	92 -1	12,6642	2	,0000	-,5741	-,4197	
Direct ef Effe	fect of X ct 88 ,0	on Y se	t		р	LTCI	ULCI ,0763		
Indirect	effect(s)	of X on Y	:						
	Effect	BootSE	BootI	LCI	BootUL	CI			
TOTAL	-,4554	,0659	-,5	5863	-,32	74			
Indl	-,0852	,0296	-,1	1513	-,03	62			
	-,2658	-							
Ind3	-,1044	,0276	-,1	1608	-,05	28			
	effect key ->			->	ISaída				

CAfet

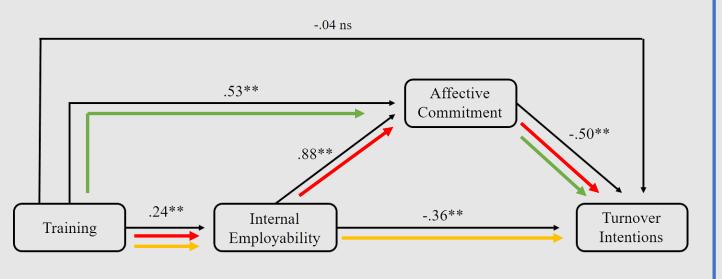
Emp

->

->

->

ISaída


CAfet

->

ISaída

Ana Moreira

A serial Mediation effect

The total indirect effect splits into three indirect effects:

- ➤ the serial indirect effect;
- the indirect effect in which perceived internal employability mediates the relationship between training and turnover intentions;
- the indirect effect in which affective commitment mediates the relationship between training and turnover intentions.

Ana Moreira

A serial Mediation effect

Table 1. Indirect effects of Model

	Indirect effects			
	Estimates	Confidence interval at 95% with Bootstrap correction		
Model 1				
Total	46 (.07)	[59;33]		
Training \rightarrow IE \rightarrow TI	09 (.03)	[15;04]		
Training \rightarrow IE \rightarrow AC \rightarrow TI	10 (.03)	[16;06]		
Training $\rightarrow AC \rightarrow TI$	27 (.05)	[37;17]		

Note: Total effect Training \rightarrow EI = -.49 (.08). The standard error is in brackets TI = turnover intentions; AC = affective commitment; IE = perceived internal employability In this table, we find that the total indirect effect and the three indirect effects are significant because zero is not in the confidence interval.

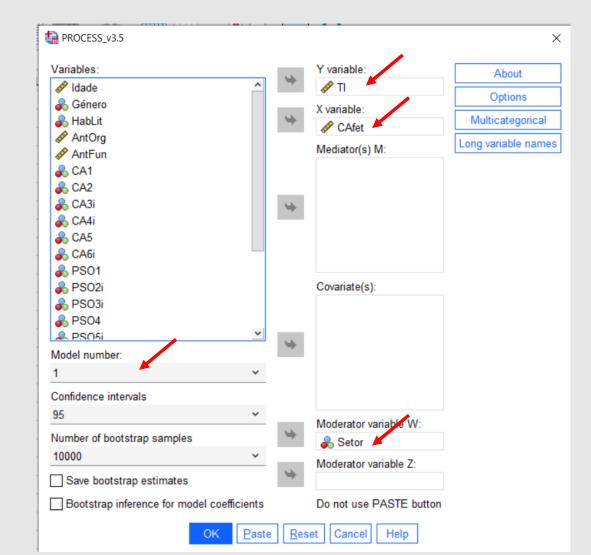
Ana Moreira

A serial Mediation effect

Table 1. Indirect effects of Model

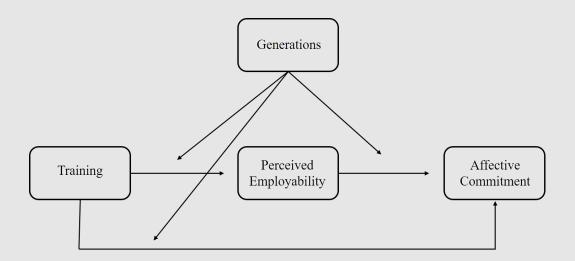
	Indirect effects				
	Estimates	Confidence interval at 95% with Bootstrap correction			
Model 1					
Total	46 (.07)	[59;33]			
Training \rightarrow IE \rightarrow TI	09 (.03)	[15;04]			
Training \rightarrow IE \rightarrow AC \rightarrow TI	10 (.03)	[16;06]			
Training \rightarrow AC \rightarrow TI	27 (.05)	[37;17]			

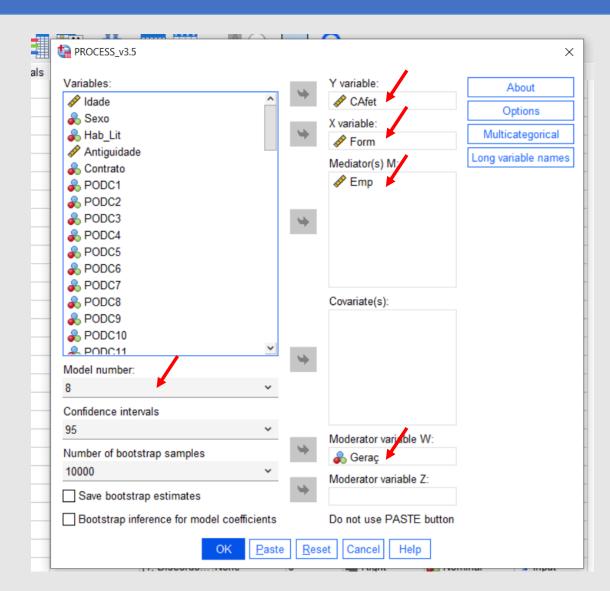
Note: Total effect Training \rightarrow EI = -.49 (.08). The standard error is in brackets TI = turnover intentions; AC = affective commitment; IE = perceived internal employability The strongest indirect effect is the one in which affective commitment mediates the relationship between training and turnover intentions.



Ana Moreira

Advantages of using Macro Process in Moderation Models


When we test a moderating effect in SPSS or AMOS Graphics, we have to standardize the independent variable and the moderator variable to create the interaction variable. In Macro PROCESS we do not need to do that.



Ana Moreira

Moderated Mediation Model

Ana Moreira

Ana Moreira

